p-group, metabelian, nilpotent (class 3), monomial
Aliases: C42.358C23, (C4×D8)⋊6C2, (C4×Q16)⋊5C2, C4⋊C4.351D4, C4.Q16⋊25C2, D4⋊Q8⋊25C2, D4⋊D4.2C2, C2.20(D4○D8), C4⋊C8.57C22, C4⋊C4.77C23, (C4×C8).71C22, (C2×C8).51C23, C2.19(Q8○D8), D4.14(C4○D4), D4.7D4⋊20C2, D4.2D4⋊21C2, (C2×C4).322C24, Q8.12(C4○D4), Q8.D4⋊21C2, C22⋊C4.152D4, (C4×D4).84C22, C23.261(C2×D4), C4⋊Q8.107C22, SD16⋊C4⋊17C2, (C4×Q8).80C22, C8⋊C4.14C22, C2.D8.92C22, (C2×D4).412C23, (C2×D8).128C22, C4⋊D4.30C22, C22.D8⋊18C2, C22⋊C8.35C22, (C2×Q8).382C23, C22⋊Q8.30C22, C23.48D4⋊18C2, (C22×C4).295C23, C42.7C22⋊7C2, Q8⋊C4.38C22, (C2×Q16).123C22, (C2×SD16).19C22, C4.4D4.29C22, C22.582(C22×D4), D4⋊C4.164C22, C22.36C24⋊2C2, C23.33C23⋊13C2, C42⋊C2.133C22, C2.123(C22.19C24), C4.207(C2×C4○D4), (C2×C4).506(C2×D4), (C2×C4⋊C4).616C22, (C2×C4○D4).145C22, SmallGroup(128,1856)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C22 — C42⋊C2 — C42.358C23 |
Generators and relations for C42.358C23
G = < a,b,c,d,e | a4=b4=c2=e2=1, d2=b2, ab=ba, ac=ca, dad-1=ab2, ae=ea, cbc=ebe=b-1, bd=db, dcd-1=a2b2c, ece=bc, de=ed >
Subgroups: 364 in 192 conjugacy classes, 88 normal (84 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, D8, SD16, Q16, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C4○D4, C4×C8, C8⋊C4, C22⋊C8, D4⋊C4, Q8⋊C4, C4⋊C8, C2.D8, C2×C4⋊C4, C2×C4⋊C4, C42⋊C2, C42⋊C2, C4×D4, C4×D4, C4×Q8, C4⋊D4, C22⋊Q8, C22⋊Q8, C22.D4, C4.4D4, C4.4D4, C42⋊2C2, C4⋊Q8, C2×D8, C2×SD16, C2×Q16, C2×C4○D4, C42.7C22, C4×D8, C4×Q16, SD16⋊C4, D4⋊D4, D4.7D4, D4.2D4, Q8.D4, D4⋊Q8, C4.Q16, C22.D8, C23.48D4, C23.33C23, C22.36C24, C42.358C23
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C22×D4, C2×C4○D4, C22.19C24, D4○D8, Q8○D8, C42.358C23
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 20 26 23)(2 17 27 24)(3 18 28 21)(4 19 25 22)(5 11 62 14)(6 12 63 15)(7 9 64 16)(8 10 61 13)(29 34 41 39)(30 35 42 40)(31 36 43 37)(32 33 44 38)(45 49 57 54)(46 50 58 55)(47 51 59 56)(48 52 60 53)
(5 16)(6 13)(7 14)(8 15)(9 62)(10 63)(11 64)(12 61)(17 24)(18 21)(19 22)(20 23)(29 34)(30 35)(31 36)(32 33)(37 43)(38 44)(39 41)(40 42)(45 59)(46 60)(47 57)(48 58)(49 51)(50 52)(53 55)(54 56)
(1 45 26 57)(2 58 27 46)(3 47 28 59)(4 60 25 48)(5 29 62 41)(6 42 63 30)(7 31 64 43)(8 44 61 32)(9 36 16 37)(10 38 13 33)(11 34 14 39)(12 40 15 35)(17 55 24 50)(18 51 21 56)(19 53 22 52)(20 49 23 54)
(1 44)(2 41)(3 42)(4 43)(5 58)(6 59)(7 60)(8 57)(9 52)(10 49)(11 50)(12 51)(13 54)(14 55)(15 56)(16 53)(17 34)(18 35)(19 36)(20 33)(21 40)(22 37)(23 38)(24 39)(25 31)(26 32)(27 29)(28 30)(45 61)(46 62)(47 63)(48 64)
G:=sub<Sym(64)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,20,26,23)(2,17,27,24)(3,18,28,21)(4,19,25,22)(5,11,62,14)(6,12,63,15)(7,9,64,16)(8,10,61,13)(29,34,41,39)(30,35,42,40)(31,36,43,37)(32,33,44,38)(45,49,57,54)(46,50,58,55)(47,51,59,56)(48,52,60,53), (5,16)(6,13)(7,14)(8,15)(9,62)(10,63)(11,64)(12,61)(17,24)(18,21)(19,22)(20,23)(29,34)(30,35)(31,36)(32,33)(37,43)(38,44)(39,41)(40,42)(45,59)(46,60)(47,57)(48,58)(49,51)(50,52)(53,55)(54,56), (1,45,26,57)(2,58,27,46)(3,47,28,59)(4,60,25,48)(5,29,62,41)(6,42,63,30)(7,31,64,43)(8,44,61,32)(9,36,16,37)(10,38,13,33)(11,34,14,39)(12,40,15,35)(17,55,24,50)(18,51,21,56)(19,53,22,52)(20,49,23,54), (1,44)(2,41)(3,42)(4,43)(5,58)(6,59)(7,60)(8,57)(9,52)(10,49)(11,50)(12,51)(13,54)(14,55)(15,56)(16,53)(17,34)(18,35)(19,36)(20,33)(21,40)(22,37)(23,38)(24,39)(25,31)(26,32)(27,29)(28,30)(45,61)(46,62)(47,63)(48,64)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,20,26,23)(2,17,27,24)(3,18,28,21)(4,19,25,22)(5,11,62,14)(6,12,63,15)(7,9,64,16)(8,10,61,13)(29,34,41,39)(30,35,42,40)(31,36,43,37)(32,33,44,38)(45,49,57,54)(46,50,58,55)(47,51,59,56)(48,52,60,53), (5,16)(6,13)(7,14)(8,15)(9,62)(10,63)(11,64)(12,61)(17,24)(18,21)(19,22)(20,23)(29,34)(30,35)(31,36)(32,33)(37,43)(38,44)(39,41)(40,42)(45,59)(46,60)(47,57)(48,58)(49,51)(50,52)(53,55)(54,56), (1,45,26,57)(2,58,27,46)(3,47,28,59)(4,60,25,48)(5,29,62,41)(6,42,63,30)(7,31,64,43)(8,44,61,32)(9,36,16,37)(10,38,13,33)(11,34,14,39)(12,40,15,35)(17,55,24,50)(18,51,21,56)(19,53,22,52)(20,49,23,54), (1,44)(2,41)(3,42)(4,43)(5,58)(6,59)(7,60)(8,57)(9,52)(10,49)(11,50)(12,51)(13,54)(14,55)(15,56)(16,53)(17,34)(18,35)(19,36)(20,33)(21,40)(22,37)(23,38)(24,39)(25,31)(26,32)(27,29)(28,30)(45,61)(46,62)(47,63)(48,64) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,20,26,23),(2,17,27,24),(3,18,28,21),(4,19,25,22),(5,11,62,14),(6,12,63,15),(7,9,64,16),(8,10,61,13),(29,34,41,39),(30,35,42,40),(31,36,43,37),(32,33,44,38),(45,49,57,54),(46,50,58,55),(47,51,59,56),(48,52,60,53)], [(5,16),(6,13),(7,14),(8,15),(9,62),(10,63),(11,64),(12,61),(17,24),(18,21),(19,22),(20,23),(29,34),(30,35),(31,36),(32,33),(37,43),(38,44),(39,41),(40,42),(45,59),(46,60),(47,57),(48,58),(49,51),(50,52),(53,55),(54,56)], [(1,45,26,57),(2,58,27,46),(3,47,28,59),(4,60,25,48),(5,29,62,41),(6,42,63,30),(7,31,64,43),(8,44,61,32),(9,36,16,37),(10,38,13,33),(11,34,14,39),(12,40,15,35),(17,55,24,50),(18,51,21,56),(19,53,22,52),(20,49,23,54)], [(1,44),(2,41),(3,42),(4,43),(5,58),(6,59),(7,60),(8,57),(9,52),(10,49),(11,50),(12,51),(13,54),(14,55),(15,56),(16,53),(17,34),(18,35),(19,36),(20,33),(21,40),(22,37),(23,38),(24,39),(25,31),(26,32),(27,29),(28,30),(45,61),(46,62),(47,63),(48,64)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | ··· | 4F | 4G | ··· | 4O | 4P | 4Q | 4R | 8A | 8B | 8C | 8D | 8E | 8F |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 |
size | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 8 | 2 | ··· | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 4 | 4 | 4 | 4 | 8 | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | C4○D4 | C4○D4 | D4○D8 | Q8○D8 |
kernel | C42.358C23 | C42.7C22 | C4×D8 | C4×Q16 | SD16⋊C4 | D4⋊D4 | D4.7D4 | D4.2D4 | Q8.D4 | D4⋊Q8 | C4.Q16 | C22.D8 | C23.48D4 | C23.33C23 | C22.36C24 | C22⋊C4 | C4⋊C4 | D4 | Q8 | C2 | C2 |
# reps | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 2 | 2 |
Matrix representation of C42.358C23 ►in GL6(𝔽17)
13 | 0 | 0 | 0 | 0 | 0 |
0 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 6 | 7 | 15 | 0 |
0 | 0 | 7 | 6 | 0 | 15 |
0 | 0 | 9 | 8 | 11 | 10 |
0 | 0 | 8 | 9 | 10 | 11 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 10 | 0 | 0 | 1 |
0 | 0 | 0 | 7 | 16 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
1 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 10 | 1 | 0 |
0 | 0 | 7 | 0 | 0 | 16 |
1 | 15 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 10 | 2 | 0 |
0 | 0 | 10 | 4 | 0 | 2 |
0 | 0 | 1 | 11 | 13 | 7 |
0 | 0 | 11 | 1 | 7 | 13 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 3 | 0 | 0 |
0 | 0 | 3 | 14 | 0 | 0 |
0 | 0 | 0 | 13 | 3 | 3 |
0 | 0 | 4 | 0 | 3 | 14 |
G:=sub<GL(6,GF(17))| [13,0,0,0,0,0,0,13,0,0,0,0,0,0,6,7,9,8,0,0,7,6,8,9,0,0,15,0,11,10,0,0,0,15,10,11],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,16,10,0,0,0,1,0,0,7,0,0,0,0,0,16,0,0,0,0,1,0],[1,1,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,7,0,0,0,16,10,0,0,0,0,0,1,0,0,0,0,0,0,16],[1,0,0,0,0,0,15,16,0,0,0,0,0,0,4,10,1,11,0,0,10,4,11,1,0,0,2,0,13,7,0,0,0,2,7,13],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,3,3,0,4,0,0,3,14,13,0,0,0,0,0,3,3,0,0,0,0,3,14] >;
C42.358C23 in GAP, Magma, Sage, TeX
C_4^2._{358}C_2^3
% in TeX
G:=Group("C4^2.358C2^3");
// GroupNames label
G:=SmallGroup(128,1856);
// by ID
G=gap.SmallGroup(128,1856);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,456,758,1018,304,4037,1027,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^4=b^4=c^2=e^2=1,d^2=b^2,a*b=b*a,a*c=c*a,d*a*d^-1=a*b^2,a*e=e*a,c*b*c=e*b*e=b^-1,b*d=d*b,d*c*d^-1=a^2*b^2*c,e*c*e=b*c,d*e=e*d>;
// generators/relations